
Sparse Matrix Ordering Methods for Interior Point LinearProgrammingEdward Rothberg Bruce HendricksonSilicon Graphics, Inc. Sandia National LaboratoriesMountain View, CA 94043 Albuquerque, NM 87185January 31, 1996Revised September 21, 1996AbstractThe main cost of solving a linear programming problem using an interior point method is usually the cost ofsolving a series of sparse, symmetric linear systems of equations, A�ATx = b. These systems are typicallysolved using a sparse direct method. The �rst step in such a method is a reordering of the rows and columnsof the matrix to reduce �ll in the factor and/or reduce the required work. This paper evaluates severalmethods for performing �ll-reducing ordering on a variety of large-scale linear programming problems. We�nd that a new method, based on the nested dissection heuristic, provides signi�cantly better orderings thanthe most commonly used ordering method, minimum degree.1 IntroductionAn interior point method solves a linear programming problem by computing a sequence of direction vectors.At each iteration, the method takes a step in the computed direction, moving closer to the optimal solution.The details of the interior point method are not relevant to this paper, so we refer the reader to [21, 22] formore information. The dominant computation in each iteration of the method is the solution of a sparselinear system A�ATx = b to determine the step direction. The matrix �, a diagonal matrix, changes fromiteration to iteration, while the A matrix remains constant. The linear systems are typically solved byfactoring the matrix M = A�AT into M = LDLT , where L is lower triangular and D is diagonal. Thesolution vector x is then computed by solving Lz = b for z, then Dy = z for y, then LTx = y.When matrix M is factored into LDLT , the factor matrix L su�ers some amount of �ll : Lij entriesbecome non-zero where the corresponding Mij are zero. Fill in the factor matrix can be quite substantial |a 50-fold increase in non-zeroes is not uncommon. The amount of �ll is strongly in
uenced by the orderingof the rows and columns of M ; factoring a permuted matrix PMP T , where P is a permutation matrix,can dramatically reduce the amount of work required for the factorization. Finding the optimal ordering isan NP-complete problem, so the matrix is typically reordered using a heuristic. The most commonly usedheuristic is minimum degree ordering [12, 24, 30]. Variants of minimum degree include Quotient MinimumDegree (QMD) [11], Multiple MinimumDegree (MMD) [20], and Approximate MinimumDegree (AMD) [1].Minimum degree ordering is not the only available ordering heuristic. One important alternative isnested dissection [10, 11]. While early implementations of nested dissection (speci�cally Automated NestedDissection) were much less e�ective than minimumdegree, recent developments have changed this situation.Better methods for �nding graph separators, which form the basis for nested dissection ordering, are nowavailable. Examples include spectral methods [27, 28], multi-level Fiduccia-Mattheyses methods [7, 8, 14,17, 18], and vertex-separator Fiduccia-Mattheyses variants [4, 15].The most widely used ordering method in interior point linear programming today is multiple minimumdegree ordering. This paper looks at �ve other ordering methods, investigating whether any of them o�erssigni�cant advantages over MMD for a range of large-scale linear programming problems.1



2 Sparse matrix orderingThis section describes the minimumdegree and nested dissection ordering methods, including discussions ofthe variants we explore in this paper. All of the ordering methods we consider are most easily described interms of the graph representation G of matrixM . Graph G has n vertices, where n is the number of rowsand columns in M . There is an edge between vertices i and j in G for every non-zero Mij inM . The degreeof a vertex in G is equal the number of edges incident to that vertex. The sparse factorization is performedas a sequence of n elimination steps, where in each step i, vertex i is removed from the graph G and edgesare added so that all neighbors of vertex i become adjacent in the new graph. The edges that are addedrepresent �ll in the factor matrix.2.1 Minimum degree orderingThe �rst method we consider is minimum degree ordering. The intuition behind this method is quite simple.Since the elimination of a vertex causes its neighbors to become adjacent, minimum degree always choosesa vertex of minimum degree to eliminate next. Unfortunately, this very simple idea has historically provento be quite di�cult to implement e�ciently [12]. Early implementations (e.g., Quotient Minimum Degree(QMD)) required enormous runtimes. Fortunately, several variants of minimum degree ordering have sincebeen developed whose runtimes are quite reasonable in comparison to the cost of the subsequent factorization.We study three such variants. The �rst, Multiple Minimum Degree (MMD) [20], reduces the runtime of thealgorithm by eliminating a set of vertices of minimum degree simultaneously. This multiple eliminationtechnique dramatically reduces the cost of updating the degrees of the neighbors of eliminated vertices, themain cost of the algorithm. Whereas QMD must update neighbor degrees each time a vertex is eliminated,MMD will often eliminate many neighbors of a vertex before updating that vertex's degree.The second method we consider is a recent variant of minimum degree, called Approximate MinimumDegree (AMD) [1]. AMD further reduces runtime by computing an inexpensive upper bound on a vertex'sdegree rather than the true degree. Another recently proposed variant of minimum degree, ApproximateMinimum local Fill (AMF) [29], improves on minimum degree by modifying the strategy used to selectvertices for elimination. The method uses a rough approximation of the �ll that would be generated byeliminating a vertex rather than using the vertex degree. The runtime of AMF ordering is only slightlyhigher than that of AMD ordering.2.2 Nested dissection orderingNested dissection takes a very di�erent approach to ordering a sparse matrix. Whereas minimum degreeconsiders very local information about the graph G (vertex degree), nested dissection takes a more globalview. Speci�cally, the nested dissection algorithm performs the reordering on G as follows:� Find a vertex separator S in G (a set of vertices whose removal leaves a disconnected graph).� Remove the vertices in S from G (and order them after the remaining vertices in G).� Perform nested dissection on the sub-graphs that remain.By ordering S after the remaining, disconnected sub-graphs, the nested dissection algorithm guaranteesthat the sub-graphs are disconnected in the factor matrix L, thus limiting potential �ll. The vertices in Sgenerally form a dense sub-matrix in L, so the quality of the ordering clearly depends on the size of S.As mentioned earlier, several methods are available for �nding vertex separators S in G. This paperconcentrates on a particular class of these methods, multi-level variants of Fiduccia-Mattheyses graph par-titioning, that has proven to be quite e�ective for structural analysis and computational 
uid dynamicsmatrices [7, 14, 17]. The algorithms we employ here are described more fully in [15].Multi-level methods for graph partitioning are based on the following framework. The original graphis �rst coarsened , by forming a sequence of graphs, where each graph in the sequence ideally has halfthe number of vertices as the previous one. Each graph in the sequence is a coarser \approximation" ofthe previous graph, typically obtained by merging pairs of adjacent vertices in the large graph into singlevertices in the coarsened graph. The coarsest graph is then partitioned into two sets. This partitioning is2



then projected onto the next larger graph. The projected partitioning is re�ned in the larger graph, usingsome local improvement heuristic. The resulting partitioning is then projected onto the next larger graph.The process continues until a partitioning on the original, uncoarsened graph is found.The local improvement heuristic used on the coarsened graphs in the multi-level method is typically alinear-time variant of the Fiduccia-Mattheyses graph partitioning algorithm [8, 18]. We refer the reader tothe relevant papers for details. As originally stated, the Fiduccia-Mattheyses graph partitioning heuristiccomputes edge separators; it partitions the vertices of G into two sets, C and D, attempting to minimizethe number of edges between the sets. Recall that the nested dissection method for ordering sparse matricesrequires vertex separators | it requires three sets of vertices, S, C, and D, such that C and D have no edgesbetween them. A vertex separator can trivially be derived from an edge separator by choosing S to be theset of all vertices in C that are adjacent to vertices in D (or vice versa). Alternatively, one can use bipartitegraph matching techniques to �nd the minimum size vertex separator from among all vertices incident toseparator edges [25, 28]. The cost of computing the minimum cost separator from among these vertices isquite small.One obvious limitation of an edge separator approach to �nding vertex separators is that it optimizes thewrong objective function. The heuristic tries to minimize the number of edges between C and D, while thequality of the nested dissection ordering depends on the number of vertices in the derived vertex separatorS. An alternative to the use of edge separators is an approach that �nds vertex separators directly [2, 19].One can create a multi-level vertex separator method [15] that is entirely analogous to the multi-level edgeseparator approach, except that it maintains three sets of vertices at each level of the graph coarsening: S,C, and D. The local improvement heuristic then attempts to directly minimize the size of the separator Sat each level.In our nested dissection implementation, we recursively divide the graph until the remaining sub-graphscontain fewer than 1/32 of the original vertices. At this point, the sub-graphs are ordered using AMD. Thishybrid approach takes advantage of the ability of minimum degree methods to quickly order small domainsvery e�ectively.Nested dissection can be hybridized with a minimum degree method in another way [3, 15]. Once allsub-graphs containing fewer than 1/32 of the original vertices are reordered and eliminated, minimumdegreeordering can be used to reorder the remaining separator vertices. This has the advantage of removing theimplicit and often incorrect assumption in nested dissection that a pure recursive subdivision of the problemis best. This paper presents results from two di�erent nested dissection approaches, one that uses the originalrecursive ordering of separator vertices and another that reorders these separator vertices using AMF.The results in [15] indicate that nested dissection methods based on vertex separators are more e�ectivethan either multi-level edge separator nested dissection methods or minimum degree methods for structuralanalysis and computational 
uid dynamics problems. It is not at all clear, however, how such methods wouldbehave for linear programming problems. Nested dissection is based on geometric intuitions that might notnecessarily hold for the highly irregular problems found in linear programming. In particular, the graphsassociated with LP matrices may not have the small separators which motivate nested dissection. Therehas been some previous work applying nested dissection using edge separator methods to relatively smallLP models with mixed results [16, 17]. We now consider the behavior of a variety of ordering methods on asuite of large-scale linear programming problems.3 MethodologyOur study looks at 22 large-scale linear programming problems. The problem suite includes four widelystudied problems from NETLIB [9] (PILOT, PILOT87, DFL001, and PDS-20), and a variety of problemsfrom customer applications. This test set includes problems from telecommunications, the electronics indus-try, satellite resource allocation, FAA aircraft slot assignment, and airline 
eet models from �ve di�erentairlines. This suite was chosen to represent a cross-section of large-scale LP problems available to us, andall were chosen before any results in this paper were generated. While airline 
eet models may appearover-represented in this problem set, in our experience this application generates a signi�cant fraction of thelarge-scale LP models currently being solved.All matrices were extracted from CPLEX 4.0 (a commercial math programming package) after CPLEX3



presolve was applied to the problems. Table 1 shows relevant information about these problems, including thenumber of rows in the matrix, the number of non-zero values in the lower triangle of A�AT (in thousands),the number of non-zero values in the lower triangle of L after applying Liu's multiple minimum degreeordering [20] (in thousands), and the number of 
oating-point operations required to perform the factorization(in millions) after MMD ordering.Table 1: Statistics about test matrices.NZ in NZ in OperationsMatrix Rows A�AT (103) L (103) to factor (106)A15 6330 192 8197 17938DFL001 3965 42 1297 1078FAA 103348 1234 5928 6741TELECOM 22919 478 2593 1025GISMONDI 11884 377 45777 278105ELECTRONICS 16314 4524 5571 2602RAILROAD 72291 3738 13471 6841PDS-20 28135 158 5916 7007PILOT 1275 58 195 51PILOT87 1890 116 421 179DISTRIBUTION 22972 12425 49144 169254MULTICOM 30259 804 197598 2283557SATELLITE 4667 504 2388 1525FLEET1 20003 169 11294 30239FLEET2 60589 865 134615 975363FLEET3 16678 289 5411 7717FLEET4 16704 165 5394 7379FLEET5 2256 84 1562 1761FLEET6 16970 190 6837 11122FLEET7 13946 254 3732 4184FLEET8 32759 249 32196 124470FLEET12 18835 196 4647 5560We order our suite of matrices using the �ve di�erent codes. For our MMD results, we use Liu's im-plementation [20]. For AMD, we use the implementation by Amestoy, Davis, and Du� [1]. For AMF, weuse our own code. We should note that this implementation is built on top of an AMD code that is lesse�cient than the one by Amestoy, Davis, and Du�. The multi-level edge Fiduccia-Mattheyses (EFM) nesteddissection method is built on top of the Chaco graph partitioning package [13]. The multi-level vertexFiduccia-Mattheyses (VFM) nested dissection method was implemented by Hendrickson and Rothberg [15]in a software tool called BEND. All experiments described in this paper were performed on a Silicon GraphicsR8000 Power Challenge system.3.1 Floating-point operation countsTable 2 shows the number of 
oating-point operations required to factor the A�AT matrices for each matrixin our suite. Note that all results are expressed relative to the operation count for MMD. Since MMD isthe most widely used method for ordering sparse matrices, such ratios hopefully make the results easier tointerpret. Note that actual 
oating-point operation counts can be recovered by multiplying these ratios bythe MMD operation counts in Table 1.As can be seen from the table, AMD gives roughly comparable orderings to MMD. One can observeminor variations from problem to problem, but this is to be expected with any ordering heuristic. Theseresults are consistent with those for structural analysis matrices [1]. It can also be observed from the tablethat AMF produces roughly 14% better orderings than MMD. The vertex selection criteria of AMF is clearlymore e�ective than that of MMD and AMD. 4



Table 2: Floating-point operations for factorization (relative to MMD).Edge Vertex VFM+Matrix AMD AMF FM FM AMFA15 1.34 1.11 1.15 0.97 0.92DFL001 0.94 0.89 0.89 0.64 0.65FAA 1.04 0.97 7.20 2.19 1.06TELECOM 0.72 0.55 0.62 0.44 0.35GISMONDI 1.01 0.93 0.41 0.42 0.44ELECTRONICS 1.01 0.80 2.39 0.74 0.75RAILROAD 0.92 0.79 3.37 0.78 0.77PDS-20 1.03 1.17 0.92 0.41 0.27PILOT 0.92 0.76 1.48 0.74 0.65PILOT87 1.02 1.00 1.07 0.90 0.90DISTRIBUTION 1.28 0.51 0.24 0.21 0.20MULTICOM 0.90 0.74 0.05 0.10 0.05SATELLITE 0.94 1.32 1.67 1.18 1.07FLEET1 1.12 0.96 0.91 0.66 0.51FLEET2 1.09 0.92 0.36 0.23 0.24FLEET3 0.94 0.71 1.99 0.45 0.49FLEET4 0.83 0.71 2.50 0.39 0.38FLEET5 1.01 1.00 1.64 1.04 1.03FLEET6 1.07 0.97 0.75 0.41 0.34FLEET7 1.03 0.84 1.99 0.47 0.44FLEET8 1.00 0.86 0.97 0.58 0.55FLEET12 0.97 0.81 1.90 0.51 0.45Geom Mean 1.00 0.86 1.05 0.54 0.48Moving to the nested dissection results, we �nd that the multi-level edge Fiduccia-Mattheyses methodrequire 5% more 
oating-point operations than MMD on average, although the variation is quite high. Onproblems DISTRIBUTION and MULTICOM, for example, this method reduces operation counts by factorsof roughly 4 and 20, respectively. For problems FAA and RAILROAD, however, the method increasesoperation counts by factors of roughly 7 and 3. Overall, the method increases operation counts for 12problems and reduces them for 10.In contrast, the multi-level vertex Fiduccia-Mattheyses method produces consistently better orderingsthan MMD. Of the 22 problems, it only produces signi�cantly worse orderings for two (FAA and SATEL-LITE). Clearly, the use of a vertex separator approach rather than an edge separator approach signi�cantlyimproves the behavior of the method. Overall, the vertex FM method reduces operation counts by 46%.Performing AMF on the separators further reduces the operation counts for 17 of the 22 matrices. Thepreviously troublesome FAA matrix is improved dramatically. Overall, the orderings produced this wayrequire less than half as many 
oating point operations as those produced by MMD.An obvious question at this point is why a nested dissection approach signi�cantly outperforms minimumdegree for most of these matrices. While the answer will of course depend on the particular matrix, someinsight can be gained from considering the matrices that arise in multi-stage stochastic linear programming,where a domain-speci�c nested dissection ordering outperformed MMD by a factor of 1000 [5]. The matricesfrom this problem domain all contain a family of very small separators. Eliminating these separator verticeslast allows the problem to be trivially decomposed into many small sub-problems. Unfortunately, no degreecues are available to indicate that these separator vertices should be eliminated last. MMD eliminatesthese vertices early in the process, thus destroying the natural separator structure. While the multi-stagestochastic linear programming problems were an extreme case, we suspect that many of the matrices in ourtest suite contain small separators that MMD eliminates early because they lack obvious degree cues.A second obvious question is why the multi-level vertex separator method is vastly superior to themulti-level edge separator approach. Similar comparisons for matrices arising in structural analysis and5



computational 
uid dynamics indicate that a vertex approach is preferable [15], but the di�erence in thatsetting is much smaller. Unlike the matrices from those scienti�c computing applications, LP matrices tendto have highly variable degrees. If high-degree vertices are in the best vertex separator, neighboring edgeseparators will generally have a large number of edges. Consequently, an edge-oriented approach will �ndworse vertex separators than a vertex-oriented method.The reader should note that while the factorization is the dominant cost in the interior point method,it is not the only cost. Thus, the 52% reduction in operation counts would translate to a somewhat smallerreduction in the execution time of the method as a whole.3.2 Factor storageThe interior point method is often quite memory-intensive, and the majority of this memory is typicallyused to hold the factor matrix L. Table 3 shows the number of non-zero values in the factor matrices, againrelative to MMD, for the various ordering strategies. On average, AMD produces roughly the same numberTable 3: Non-zero values in factor matrix L (relative to MMD).Edge Vertex VFM+Matrix AMD AMF FM FM AMFA15 1.14 1.05 1.09 1.00 0.97DFL001 0.98 0.95 1.03 0.86 0.86FAA 1.01 0.99 3.07 1.62 1.12TELECOM 0.88 0.80 0.90 0.76 0.70GISMONDI 1.00 0.97 0.68 0.68 0.69ELECTRONICS 1.00 0.93 1.41 0.91 0.91RAILROAD 0.99 0.94 1.51 0.95 0.94PDS-20 1.02 1.05 1.05 0.68 0.59PILOT 0.97 0.90 1.18 0.90 0.84PILOT87 1.00 1.01 1.10 0.99 0.98DISTRIBUTION 1.12 0.76 0.55 0.51 0.50MULTICOM 0.96 0.87 0.23 0.29 0.23SATELLITE 0.97 1.14 1.28 1.07 1.04FLEET1 1.06 0.98 1.10 0.86 0.76FLEET2 1.04 0.94 0.63 0.48 0.49FLEET3 0.97 0.85 1.48 0.72 0.72FLEET4 0.91 0.85 1.72 0.66 0.64FLEET5 1.00 1.00 1.39 1.05 1.04FLEET6 1.02 0.97 0.91 0.69 0.62FLEET7 1.02 0.92 1.48 0.73 0.71FLEET8 0.99 0.92 1.07 0.77 0.73FLEET12 0.98 0.90 1.45 0.75 0.70Geom Mean 1.00 0.94 1.08 0.77 0.73of non-zero values as MMD, AMF produces 6% fewer, while the multi-level edge FM method produces 8%more. The multi-level vertex FM method produces 23% fewer, and after reordering the separators with AMFthe reduction becomes 27%.3.3 Ordering runtimesIn an interior point method, the time required to compute an ordering using MMD is typically not a largefraction of the total solution time. Recall that the non-zero structure of the matrix does not change fromiteration to iteration, so the ordering only has to be performed once. In contrast, the linear system A�ATmust be solved 30{60 times. One important case where ordering times become important, however, is whenthe interior point method is performed on a parallel machine [6, 16, 23]. The computations associated6



with the iterations of the method, including the factorization, can be readily parallelized, while ordering, ingeneral, is more di�cult to parallelize. We should add that nested dissection orderings are often advantageousfor parallel factorization (see [26], for example). Table 4 shows runtimes for the various ordering methods,again relative to MMD. The table shows that all of the alternatives we have considered here are signi�cantlyTable 4: Ordering runtime (relative to MMD).Edge Vertex VFM+Matrix AMD AMF FM FM AMFA15 0.04 0.09 0.09 0.09 0.11DFL001 0.11 0.20 0.35 0.35 0.47FAA 0.06 0.17 0.21 0.32 0.42TELECOM 0.14 0.23 0.43 0.44 0.47GISMONDI 0.08 0.15 0.39 0.52 0.58ELECTRONICS 0.11 0.59 0.32 0.22 0.63RAILROAD 0.11 0.13 0.19 0.19 0.24PDS-20 0.01 0.01 0.02 0.01 0.02PILOT 0.16 0.42 0.69 0.79 0.92PILOT87 0.11 0.16 0.46 0.54 0.63DISTRIBUTION 0.06 0.08 0.25 0.26 0.26MULTICOM 0.03 0.06 0.07 0.08 0.10SATELLITE 0.07 0.18 2.36 2.72 2.74FLEET1 0.08 0.05 0.14 0.15 0.17FLEET2 0.03 0.04 0.11 0.10 0.12FLEET3 0.10 0.14 0.25 0.28 0.31FLEET4 0.09 0.10 0.16 0.18 0.20FLEET5 0.04 0.08 0.21 0.15 0.20FLEET6 0.16 0.15 0.39 0.44 0.47FLEET7 0.10 0.14 0.26 0.27 0.31FLEET8 0.05 0.08 0.14 0.15 0.20FLEET12 0.19 0.06 0.34 0.33 0.32Geom Mean 0.07 0.11 0.23 0.24 0.29less expensive than MMD. AMD reduces ordering times by an average factor of fourteen for this suite oflarge problems. AMF reduces ordering times by a factor of nine. Interestingly, the nested dissection methodsreduce ordering times by roughly a factor of four, even though these same methods signi�cantly increaseordering times over MMD for structural analysis and CFD problems [15].Upon further investigation, we discovered several properties in these linear programming matrices thatcan cause large runtimes in MMD when compared with structural analysis and CFD matrices. The �rstis that linear programming problems often have many vertices with very high vertex degrees. In problemFLEET12, for example, the matrix contained 18835 vertices, and one vertex had degree 18699. Nearlyevery elimination step in the MMD algorithm removes a neighbor of this high-degree vertex, so the degreeof this high degree vertex must be updated. The degree update requires a very expensive traversal of thefull adjacency list. FLEET12 was an extreme example, but we observed many high-degree vertices in thematrices in our test set. In contrast, vertex degrees in structural analysis and CFD problems are generallyquite low and relatively uniform.Another reason for large MMD runtimes for these problems is that multiple elimination is less e�ectivethan it is for structural analysis matrices. Recall that MMD reduces runtimes by simultaneously eliminatingmultiple independent nodes of minimum degree. For LP matrices, we found that the higher variabilityin node degree limits the number of vertices of minimum degree. We also found that the vertices in LPmatrices are more interconnected than those in structural analysis matrices, which reduces the number ofthese minimum degree vertices that are independent. The result is that fewer vertices are eliminated ineach multiple elimination stage for linear programming matrices than for structural analysis matrices. Thisincreases the cost of the MMD algorithm. 7



4 ConclusionsThis paper has considered the question of how linear programming matrices should be ordered prior tofactorization. The most widely used reordering scheme for this problem is multiple minimum degree (MMD)but our results indicate that this is no longer the appropriate choice. Approximate minimumdegree producesorderings of equivalent quality while running more than an order of magnitude faster. Approximateminimumlocal �ll reduces 
oating point operations by 14%, while still running 9 times faster than MMD. And a nesteddissection approach based on a multi-level vertex Fiduccia-Mattheyses partitioning scheme reduces 
oating-point operations by more than a factor of 2, reduces storage requirements by 27%, and reduces orderingruntimes by roughly a factor of four.AcknowledgementsThe authors would like to thank Bob Bixby and Irv Lustig of CPLEX Optimization for providing access tomany of the large linear programming models studied in this paper.References[1] Amestoy, P., Davis, T., and Du�, I., An approximate minimum degree ordering algorithm, TechnicalReport TR-94-039, University of Florida, December, 1994.[2] Ashcraft, C., and Liu, J., A partition improvement algorithm for generalized nested dissection, TechnicalReport BCSTECH-94-020, Boeing Computer Services, 1994.[3] Ashcraft, C., and Liu, J., Robust ordering of sparse matrices using multisection, Technical ReportISSTECH-96-002, Boeing Information and Support Services, 1996.[4] Ashcraft, C., and Liu, J., Using domain decomposition to �nd graph bisectors, Technical ReportISSTECH-95-024, Boeing Information and Support Services, 1995.[5] Berger, A., Mulvey, J., Rothberg, E., and Vanderbei, R., Solving multistage stochastic programs usingtree dissection, Technical Report SOR-95-07, Dept. of Statistics and Operations Research, PrincetonUniversity, June, 1995.[6] Bisseling, R., Doup, T., and Loyens, L., \A parallel interior point algorithm for linear programming ona network of transputers", Annals of Operations Research, 43: 51{86, 1993.[7] Bui, T, and Jones, C., \A heuristic for reducing �ll in sparse matrix factorization", Sixth SIAM Con-ference on Parallel Processing for Scienti�c Computing , 1993.[8] Fiduccia, C., and Mattheyses, R., \A linear time heuristic for improving network partitions", in Pro-ceedings of the 19th IEEE Design Automation Conference, pp. 175-181, 1982.[9] Gay, D., \Electronic mail distribution of linear programming test problems",Mathematical ProgrammingSociety (COAL) Newsletter , 1988.[10] George, A., and Liu, J., \An automated nested dissection algorithm for irregular �nite element prob-lems", SIAM J. Numer. Anal., 15: 1053-1069, 1978.[11] George, A., and Liu, J., Computer Solution of Large Sparse Positive De�nite Systems, Prentice-Hall,1981.[12] George, A. and Liu, J., \The evolution of the minimum degree ordering algorithm", SIAM Review,31:1-19, 1989[13] Hendrickson, B., and Leland, R., The Chaco User's Guide: Version 2.0 , Sandia National LaboratoriesTechnical Report SAND94-2692, October, 1994. 8



[14] Hendrickson, B., and Leland, R., \A multilevel algorithm for partitioning graphs", in Proceedings inSupercomputing '95, November, 1995.[15] Hendrickson, B., and Rothberg, E., Improving the runtime and quality of nested dissection ordering,Technical Report SAND96-0868J, Sandia National Laboratories, March, 1996.[16] Karypis, G., Gupta, A., and Kumar, V., \A parallel formulation of interior point algorithms", inProceedings of Supercomputing '94 , pp. 204{213, November, 1994.[17] Karypis, G., and Kumar, V., A fast and high quality multilevel scheme for partitioning irregular graphs,Technical Report 95-035, Department of Computer Science, University of Minnesota, 1995.[18] Kernighan, B., and Lin, S., \An e�cient heuristic procedure for partitioning graphs", Bell SystemTechnical Journal , 29: 291-307, 1978.[19] Liu, J., \A graph partitioning algorithm by node separators", ACM Trans. Math. Software, 15(3):198-219, 1989.[20] Liu, J., \Modi�cation of the minimum degree algorithm by multiple elimination", ACM Trans. Math.Software, 11, pp. 141-153, 1985.[21] Lustig, I., Marsten, R., and Shanno, D., \Computational experience with a primal-dual interior pointmethod for linear programming", Linear Algebra and Its Applications, 152: 191-222, 1991.[22] Lustig, I., Marsten, R., and Shanno, D., \Interior point methods for linear programming: computationalstate of the art", ORSA Journal on Computing , 6(1): 1-14, 1994.[23] Lustig, I., and Rothberg, E. \Giga
ops in linear programming", to appear in OR Letters.[24] Markowitz, H., \The elimination form of the inverse and its application to linear programming",Man-agement Science, 3: 255-269, 1957.[25] Pothen, A., and Fan, C., \Computing the block triangular form of a sparse matrix",ACM Trans. Math.Soft., 16(4); 303-324, December, 1990.[26] Pothen, A., Rothberg, E., Simon, H., and Wang, L., \Parallel sparse Cholesky factorization with spectralnested dissection ordering", in Proceedings of the Fifth SIAM Conference on Applied Linear Algebra,pp. 418-422, June, 1994.[27] Pothen, A., Simon, H., and Liou, K., \Partitioning sparse matrices with eigenvectors of graphs", SIAMJournal of Matrix Analysis and Applications, 11(3): 430-452, 1990.[28] Pothen, A., Simon, H., Wang, L., and Barnard, S., \Towards a fast implementation of spectral nesteddissection", Proceedings of Supercomputing '92 , pp. 42-51, 1992.[29] Rothberg, E., \Ordering sparse matrices using approximate minimum local �ll", Silicon Graphicsmanuscript, submitted for publication, April, 1996.[30] Tinney, W., \Comments on using sparsity techniques for power system problems", in Sparse MatrixProceedings, IBM Research Report RAI 3-12-69, 1969.
9


